19 research outputs found

    ChatGPT Chemistry Assistant for Text Mining and Prediction of MOF Synthesis

    Full text link
    We use prompt engineering to guide ChatGPT in the automation of text mining of metal-organic frameworks (MOFs) synthesis conditions from diverse formats and styles of the scientific literature. This effectively mitigates ChatGPT's tendency to hallucinate information -- an issue that previously made the use of Large Language Models (LLMs) in scientific fields challenging. Our approach involves the development of a workflow implementing three different processes for text mining, programmed by ChatGPT itself. All of them enable parsing, searching, filtering, classification, summarization, and data unification with different tradeoffs between labor, speed, and accuracy. We deploy this system to extract 26,257 distinct synthesis parameters pertaining to approximately 800 MOFs sourced from peer-reviewed research articles. This process incorporates our ChemPrompt Engineering strategy to instruct ChatGPT in text mining, resulting in impressive precision, recall, and F1 scores of 90-99%. Furthermore, with the dataset built by text mining, we constructed a machine-learning model with over 86% accuracy in predicting MOF experimental crystallization outcomes and preliminarily identifying important factors in MOF crystallization. We also developed a reliable data-grounded MOF chatbot to answer questions on chemical reactions and synthesis procedures. Given that the process of using ChatGPT reliably mines and tabulates diverse MOF synthesis information in a unified format, while using only narrative language requiring no coding expertise, we anticipate that our ChatGPT Chemistry Assistant will be very useful across various other chemistry sub-disciplines.Comment: Published on Journal of the American Chemical Society (2023); 102 pages (18-page manuscript, 84 pages of supporting information

    Learning to Evolve Structural Ensembles of Unfolded and Disordered Proteins Using Experimental Solution Data

    Full text link
    We have developed a Generative Recurrent Neural Networks (GRNN) that learns the probability of the next residue torsions $X_{i+1}=\ [\phi_{i+1},\psi_{i+1},\omega _{i+1}, \chi_{i+1}]fromthepreviousresidueinthesequence from the previous residue in the sequence X_i$ to generate new IDP conformations. In addition, we couple the GRNN with a Bayesian model, X-EISD, in a reinforcement learning step that biases the probability distributions of torsions to take advantage of experimental data types such as J-couplingss, NOEs and PREs. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement between structures and data improves upon existing approaches that simply reweight static structural pools for disordered proteins. Instead the GRNN "DynamICE" model learns to physically change the conformations of the underlying pool to those that better agree with experiment

    A benchmark dataset for Hydrogen Combustion.

    No full text
    The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction

    IDPConformerGenerator: A Flexible Software Suite for Sampling the Conformational Space of Disordered Protein States.

    No full text
    The power of structural information for informing biological mechanisms is clear for stable folded macromolecules, but similar structure-function insight is more difficult to obtain for highly dynamic systems such as intrinsically disordered proteins (IDPs) which must be described as structural ensembles. Here, we present IDPConformerGenerator, a flexible, modular open-source software platform for generating large and diverse ensembles of disordered protein states that builds conformers that obey geometric, steric, and other physical restraints on the input sequence. IDPConformerGenerator samples backbone phi (φ), psi (ψ), and omega (ω) torsion angles of relevant sequence fragments from loops and secondary structure elements extracted from folded protein structures in the RCSB Protein Data Bank and builds side chains from robust Monte Carlo algorithms using expanded rotamer libraries. IDPConformerGenerator has many user-defined options enabling variable fractional sampling of secondary structures, supports Bayesian models for assessing the agreement of IDP ensembles for consistency with experimental data, and introduces a machine learning approach to transform between internal and Cartesian coordinates with reduced error. IDPConformerGenerator will facilitate the characterization of disordered proteins to ultimately provide structural insights into these states that have key biological functions

    Postrevolutionary Leftovers

    No full text

    Notes

    No full text
    corecore